Keyvan Sohrabi
Ammar Mushantat
Shahrokh Esfandiari
Jocelyne Feine

How successful are small-diameter implants? A literature review

Abstract

Background: Edentulism is an important issue and will remain so due to high numbers of edentate individuals worldwide. For many years, complete dentures have been the only treatment option for this population. Implant overdentures have been shown to have many advantages over conventional complete dentures. However, although dissatisfied with their mandibular dentures, some edentate elders are reluctant to undergo even simple implant treatment due to factors such as cost and fear of surgery. To address these obstacles, this paper reports on a review of small-diameter implant (SDI) studies that were performed in the last two decades. The aim of this study is to (i) determine the survival of narrow diameter implants, (ii) determine whether survival is dependent on whether these implants are placed using a flap or flapless approach, and (ii) determine whether there is a relationship between length and implant survival in SDIs.

Methods: In this review, studies were included that (i) involve implants with 3.5 mm diameter or less, (ii) have a randomized clinical trial, retrospective or prospective cohort design with human subjects, (iii) provide a follow up duration of at least 5 months following implant placement, (iv) include data on the survival rate of the implants.

Results: Forty one studies meeting the above criteria were published between 1993 and 2011 using SDIs from a variety of companies and surface characteristics with diameters of 1.8 mm to 3.5 mm and lengths of 8 mm to 18 mm. A total of 10,093 SDIs were inserted in approximately 2762 patients. Twenty-six studies involved flap reflection techniques for implant placement, six studies used a flapless technique and two studies used both techniques; in the remaining studies, the technique was not specified. Follow up duration varied from 5 months to over 9 years. The survival rate reported in all screened studies was over 90%, including eight studies in which a 100% survival rate was reported. In 22 studies, the reported survival rate ranged from 95% to 99.9%. Failure was reported most often in short SDIs (less than or equal 13 mm) compared to longer ones (more than 13 mm).

Conclusion: Survival rates reported for SDI are similar to those reported for standard width implants. These survival rates did not appear to differ between studies that used flapless and flap reflection techniques. The failure rate appeared to be higher in shorter SDIs than in longer ones in the studies in which the length of the failed implants was reported. SDIs could be considered for use with fixed restorations and mandibular overdentures, since their success rate appears to be comparable to that of regular diameter implants. They might also be an efficient, low-cost solution for elders who wish to reduce problems with denture instability.

Introduction

According to the World Health Organization, edentulism has an important adverse impact on the individual and, in some cultures, on the community, as well [World Health Organisation (WHO), 2000]. Although complete denture prostheses are available to edentate populations, these devices cause many wearers difficulties. They lack stability and retention so that many people cannot chew hard or tough foods and, in some, the dentures move, which can cause pain, food impaction and loosening in a social context. Most problems occur with the mandibular denture, because of resorption of the bone, as well as movement of the tongue, cheeks and lips. Even denture-wearers who are able to wear an upper denture without problems often have difficulties eating with the lower denture [Muller et al. 2001]. However, for many years, complete dentures have been the only treatment option for edentate individuals.

Implant overdentures provide better retention than conventional complete dentures which then substantially reduces difficulties...
in function [Meijer et al. 2004]. It has been shown that implants significantly reduce the amount of bone loss, the severity of peri-implant ridge resorption, denture instability, pain and sore spots, leading to improved masticatory efficiency and ability [Polzer et al. 2010]. Apart from these improvements, several investigations have shown the positive impact of implant support/retention on psychosocial parameters, speaking ability, self-image and denture satisfaction [Cibik et al. 1997; Wismeijer et al. 1997; Awad et al. 2000; Heydecke et al. 2003; Thomason et al. 2007]. Results from a recent meta-analysis of clinical trials on implant overdentures have demonstrated that, compared to conventional complete dentures, mandibular overdentures can be effective treatments for edentate patients, based on patient ratings of satisfaction and oral health-related quality of life [Emami et al. 2009]. The overwhelming evidence in support of implant overdentures led to the McGill Consensus Statement and, more recently, to the York Consensus Statement, both of which declare that mandibular two-implant overdentures be considered “as the first choice standard of care for edentulous patients” [Feine et al. 2002; Thomason et al. 2009].

Obstacles to implant treatment

Nevertheless, there are several obstacles to the implant option for the edentate patient: First, implant treatment is expensive, and edentate patients are often unable or unwilling to pay [Owen, 2004; Narby et al. 2008; Carlsson and Omar, 2010]. It has been reported that, although 10% of the world’s population is edentate, only 1.7% have received implant treatment [Carlsson and Omar, 2010].

Although cost is a significant barrier against implant treatment for the edentate population, other important obstacles, such as fear of surgery, play an important role. The largest group of edentate individuals is composed of those aged 65+ years. These elders are often anxious about any surgery [Kiyak et al. 1990]. In a prospective study of a group of edentate elders (65+ years) who were offered free implants for mandibular overdentures, more than one third (36%) refused to have them. The most common reason for refusal of the implant therapy was a fear of surgical risks [43%] [Walton and MacEntee, 2005]. This rejection of implant treatment should be seriously considered, since even the elimination of financial barriers did not persuade these elders to accept implants.

In an attempt to explore the major factors that can affect the decision to replace failed implants, a study of 194 patients showed that, besides the cost issue, the main reason patients avoid re-implantation was the fear of additional pain [Mardinger et al. 2008]. To gain a greater in-depth understanding of why elderly patients who are currently dissatisfied with conventional dentures decline implant treatment, a recent multicenter qualitative study of edentate patients in the UK and Canada revealed that fear and anxiety relating to potential pain or complications from surgery is a main theme in declining this type of treatment [Ellis et al. 2011].

Addressing the obstacles

The major obstacles against implant therapy for edentate patients, the issues of cost and fear of surgery, have been discussed. However, what remains to be done now is to overcome these obstacles in order to make implant therapy more accessible and less fearful to this large percentage of the edentate population.

To address the issue of fear, one might consider eliminating the need for flap reflection. Conventional flap-raising procedures are uncomfortable for patients both during and following surgery, while minimally invasive (flapless) procedures are designed to minimize discomfort from surgery by avoiding traumatic injury to the tissues. Flapless procedures may reduce surgical time, which could also reduce costs. Of course, the smaller the dimensions of the implants, the less likely it might be that a flapless placement would fail. Therefore, in an initial step to determine whether small-diameter implants (SDIs) can be placed using flapless procedures, we decided to carry out a literature review to (i) determine the survival of small (narrow) diameter implants, (ii) determine whether their survival is dependent on whether the implants are placed using a flap or flapless approach, and (iii) determine whether there is a relationship between length and implant survival.

Methods

Search strategy and eligibility criteria

PubMed, EMBASE, and Cochrane Database of Systematic Reviews up to August 2011 were searched for all peer-reviewed studies evaluating the use of SDIs. Searches were not restricted by publication date. Both keywords and MeSH terms were used in the electronic search. Key words used for search were “small diameter implant”, “narrow diameter implant” and “mini dental implant.” In addition to these databases, the reference lists of articles obtained by the electronic search, reference lists of review articles, and major implant journals [Clinical Oral Implants Research, Clinical Implant Dentistry and Related Research, Implant Dentistry and International Journal of Oral & Maxillofacial Implants] were searched manually for relevant articles. No language restrictions were applied. During the review process, we contacted experts and companies involved in this area of research to find other trials or unpublished material. The corresponding authors of studies were contacted to clarify ambiguous or missing data.

To be included in this review, studies were required to (i) involve implants with 3.5 mm diameter or less, (ii) be a randomized clinical trial, retrospective or prospective cohorts in human subjects (iii) provide a follow up duration of at least 5 months following implant placement, (iv) include data with regards to the survival rate of the implants.

The following studies were excluded (i) case reports, reviews, non-clinical studies, explanation of technique or manuals (ii) mini-implants for orthodontic anchorage (iii) animal studies (iv) small-diameter implants that were not meant for permanent use i.e., fixation of temporary crown and bridges.

Titles and abstracts, and full-texts when necessary, were screened for eligibility and confirmed by a second reviewer. In the case of discordance between reviewers, consensus was reached by discussion.

Data extraction

Data extraction was performed independently for each eligible study by at least two reviewers using a standardized form. The following variables were extracted from each study: study outcomes (survival rates), study design (randomized trials, prospective or retrospective cohort), patient demographics (age and sex), inclusion and exclusion criteria, year of publication, setting and country of intervention, follow up duration, Implant type and manufacturer, Implant surface characteristics, total number of implants placed and the number of implants in each patients, jaw segments (Anterior and Posterior site of Maxilla and Mandible), restoration type (Single Fixed, Fixed Partial, or overdentures), percentage of edentate subjects, type of surgery (flapless or not), number of implant failures in each patient and total number of failures.
Results

According to the search strategy explained in the methods, 41 studies published between 1993 and 2011 were selected in this review. Our PubMed search contained 39 of these studies, while 2 studies (including one abstract) were obtained through manual searching of the literature [Jorneus, 1996; Terpelle and Khoury, 2008]. The search in EMBASE and Cochrane Database of Systematic Reviews did not reveal any new studies. (Table 1) Block and Kent, 1993; Spiekermann et al. 1995; Jorneus, 1996; Lazzara et al. 1996; Saadoun and Le Gall, 1996; Sethi et al. 1996; Polizzi et al. 1999; Vigolo and Givani, 2000; Andersen et al. 2001; Hallman, 2001; Ahn et al. 2004; Mazor et al. 2004; Vigolo et al. 2004; Zinski et al. 2004; Bulard and Vance, 2005; Comfort et al. 2005; Griffitts et al. 2005; Cordinaro et al. 2006; Romeo et al. 2006; Zarine et al. 2006; Degidi et al. 2008; Degidi et al. 2009; Reddy et al. 2008; Franco et al. 2009; Malo and de Araujo Nobre, 2011; Sohn et al. 2011), 7 studies included mixed populations (edentate and non-edentate) Lazzara et al. 1996; Hallman, 2001; Zinski et al. 2004; Comfort et al. 2005; Shatkin et al. 2007; Anitua et al. 2008; Cochran et al. 2009 and, in the remaining studies, the type of edentation was not specified (Block and Kent, 1993; Spiekermann et al. 1995; Jorneus, 1996; Saadoun and Le Gall, 1996; Sethi et al. 1996; Bulard and Vance, 2005; Terpelle and Khoury, 2008; Anitua et al. 2010; Arisan et al. 2010; Huang et al. 2010; Olate et al. 2010; Geckili et al. 2011) (See Table 1).

Surgical technique

Implant characteristics

Different implant brands were used [e.g. Branemark, IMTEC, ITI] with various diameters (1.8–3.5 mm), surface characteristics and lengths (8–18 mm). A total of 10,093 SDIs of various brands, diameters and lengths were inserted in 2762 patients. Some studies however, only reported the number of implants placed but not the number of patients. (Block and Kent, 1993; Lazzara et al. 1996; Saadoun and Le Gall, 1996; Sethi et al. 1996; Bulard and Vance, 2005, Anitua et al. 2008)

Patients’ characteristics

Patients’ ages ranged from 18 to 91 years, these patients presented with various health conditions. Medically compromised Patients (e.g. uncontrolled diabetes mellitus) were excluded from all studies. Eight studies included edentate patients [Ahn et al. 2004; Griffitts et al. 2005; Cho et al. 2007; Morneburg and Proschel, 2008; Velti et al. 2008; Jofre et al. 2010; Al-Nawas et al. 2011; Elysad et al. 2011], 14 studies included non-edentate populations [Polizzi et al. 1999; Vigolo and Givani, 2000; Andersen et al. 2001; Mazor et al. 2004; Vigolo et al. 2004; Cordinaro et al. 2006; Romeo et al. 2006; Zarine et al. 2006; Degidi et al. 2008; Degidi et al. 2009; Reddy et al. 2008; Franco et al. 2009; Malo and de Araujo Nobre, 2011; Sohn et al. 2011)] in the remaining studies, the location was not specified.

Prosthesis design

In eight investigations, the implant prostheses were mandibular overdentures(Ahn et al. 2004; Bulard and Vance, 2005; Griffitts et al. 2005; Cho et al. 2007; Morneburg and Proschel, 2008; Jofre et al. 2010; Al-Nawas et al. 2011; Elysad et al. 2011), while the rest of the included studies were treated with variety of fixed, removable prostheses and overdentures [Single units, fixed bridges, removable partial denture and partial fixed]. Two studies did not report the type of restoration(Block and Kent, 1993; Jorneus, 1996).

Follow up

Follow up duration varied from 5 months to over 9 years. Only one study [Griffitts et al. 2005] out of the 41 included studies reported patient-based outcomes. In this study, four subjective measures of patient’s satisfaction were assessed [comfort, retention, chewing ability and speaking ability]. The authors also discussed the financial advantages of SDIs.

Survival rate

The survival rate reported in all screened studies was over 90%, except for one study [Saadoun and Le Gall 1996] in which the survival rate was reported to be 89%. Eight studies reported a 100% survival rate [Sethi et al. 1996; Cordinaro et al. 2006; Zarine et al. 2006; Velti et al. 2008; Cochrane et al. 2009; Degidi et al. 2009; Franco et al. 2009; Anitua et al. 2010, Arisan et al. 2010; Olate et al. 2010; Degidi et al. 2008; Malo and de Araujo Nobre, 2011] in 23 studies, the survival rate ranged from 95% to 99.9% [Block and Kent, 1993; Spiekermann et al. 1995; Lazzara et al. 1996; Polizzi et al. 1999, Andersen et al. 2001; Hallman, 2001; Campelo and Camara, 2002, Ahn et al. 2004; Mazor et al. 2004; Vigolo et al. 2004; Zinski et al. 2004; Comfort et al. 2005; Griffitts et al. 2005; Romeo et al. 2006; Anitua et al. 2008; Reddy et al. 2008; Franco et al. 2009; Anitua et al. 2010; Arisan et al. 2010; Malo and de Araujo Nobre, 2011; Al-Nawas et al. 2011; Geckili et al. 2011; Morneburg and Proschel, 2008]. Only 13 out of 41 studies reported the length of the failed implants. A total of 104 implant failures [with their length data available] were reported. It was observed that failures occurred most often in implants with short length (<13 mm) [n = 88] compared to the long ones (>13 mm) [n = 16] used in the same
| Citation/Country | Study design/Technique | Implant type | Implant diameter | Implant length | Surface characteristic | Implant type/Implant diameter | Number of implants/Patients | Jaw segment | Edentulism | Restoration type | Age (years) | Failure/length of failed implants | Follow up duration | Implants survival rate |
|---------------------------------------|------------------------|--------------|------------------|----------------|---------------------------------|------------------------------|------------------------------|--------------------------|------------|-------------|----------------------|-------------|-------------------------------|-------------------|-----------------------|
| Al-Nawas et al. (2011)/Multicenter (Europe) | Randomized trial/flap reflection | Straumann | 3.3 mm | 8 mm 10 mm 12 mm 14 mm | (SLActive) Sandblast, Large grit, Acid etched | 178 | Mandible 100% Edentate | Overdentures 65.81 (49–86) | 3/NS 1 year | 98% |
| Elsyad et al. (2011)/Egypt | Prospective/Flapless | IMTEC | 1.8 | 12 mm (7.1%) 14 mm (25%) 16 mm (36.6%) 18 mm (31.3%) | Sandblasted & acid-etched | 112 | Mandible 100% Edentate | Overdentures 62.9 (49–75) | 4/4*14 mm 3 years | 96.4% |
| Geckili et al. (2011)/Turkey | Retrospective/NS | Straumann Osseospeed | 3.3–3.5 mm | NS | Various | 159 implants 71 patients | 71 Maxilla 88 Mandible | NS 32 Overdentures 127 Fixed | 2/NS 5 years | 98.70% |
| Malo and de Araujo Nobre (2011)/Portugal | Retrospective/Flap reflection | Branemark | 3.3 mm | 10 mm 11.5 mm 13 mm 15 mm | Machined surface VS TiUnite™ (TiO2) | 247 implants 147 patients | 144 Po. Maxilla 103 Po. Mandible | Most of the patients are non-edentate | Fixed 47.5 (26–77) | (12) 3*10 mm 2*11.5 mm 1*13 mm 3*15 mm 5 years (1–11) | 95.10% |
| Sohn et al. (2011)/Korea | Retrospective/Flap reflection and flapless | Biohorizons | 3.00 mm | 12 mm (3) 15 mm (59) | RBT body HA body | 62 implants 32 Patients | 8 Maxilla 54 Mandible | 100% non-edentate | Fixed 52 (42–72) | 0 23 ± 4.3 months | 100% |
| Anitua et al. (2010)/Spain | Retrospective/Flap reflection | Tiny® | 2.5–3 mm | 10 mm (8) 11.5 mm (9) 13 mm (41) 15 mm (31) | PRGF acid-etched surface | 89 implants 51 Patients | 66 Maxilla 23 Mandible | NS 30% overdenture 70% fixed | Fixed 54.8 (19–90) | 1/NS 3 years | 98.90% |
| Arisan (2010)/Turkey | Retrospective/Flap reflection | Straumann Xive | 3.3 mm | 8–9.5 mm (33) 9.5–11 mm (83) 11–13 mm (11) 13–15 mm (87) | Sandblasting and acid etching | 316 implants 139 patients | 161 Maxilla 155 Mandible | NS 24 overdentures 96 Fixed | 55.3 (21–80) | (14) 1*8 mm 6*9.5 mm 7*10 mm 1*13 mm 9.1 years | 92.30% |
Table 1. (continued)

<table>
<thead>
<tr>
<th>Citation/Country</th>
<th>Study design/Technique</th>
<th>Implant type</th>
<th>Implant diameter</th>
<th>Implant length</th>
<th>Surface characteristic</th>
<th>Number of implants/Patients</th>
<th>Jaw segment</th>
<th>Edentulism type</th>
<th>Age (years)</th>
<th>Failure/length of failed implants</th>
<th>Follow up duration</th>
<th>Implants survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang et al. (2010)/China</td>
<td>Prospective/NS</td>
<td>Osstem M5</td>
<td>2.5 mm</td>
<td>3.0 mm</td>
<td>NS</td>
<td>RBM</td>
<td>36 implants 36 patients</td>
<td>NS</td>
<td>NS</td>
<td>Fixed</td>
<td>NS</td>
<td>0</td>
</tr>
<tr>
<td>Jofre et al. (2010)/Chile</td>
<td>Randomized trial/Flapless</td>
<td>IMTEC</td>
<td>1.8 mm</td>
<td>45 mm</td>
<td>Sand blasted & acid-etched</td>
<td>90 implants 45 patients</td>
<td>Mandible</td>
<td>100%</td>
<td>Edentate</td>
<td>Overdentures</td>
<td>45-90</td>
<td>0</td>
</tr>
<tr>
<td>Olate et al. (2010)/Brazil</td>
<td>Retrospective/Flap reflection</td>
<td>Conexão SIN Neodent</td>
<td>3.3–3.5 mm</td>
<td>6–9 mm</td>
<td>Acidification</td>
<td>137 implants 109 Maxilla 26 Mandible</td>
<td>NS</td>
<td>Fixed</td>
<td>Overdentures</td>
<td>42.7</td>
<td>7/NS</td>
<td>249 days</td>
</tr>
<tr>
<td>Cochran et al. (2009)/USA, UK</td>
<td>Prospective/Flap reflection</td>
<td>Straumann</td>
<td>3.3-4.1 mm (Solid-Screw)(SS) 3.5 mm (Hollow-cylinder)(HC)</td>
<td>8 mm</td>
<td>Titanium plasma-sprayed</td>
<td>596 implants 231(HC) Maxilla 365(SS) Mandible</td>
<td>Edentate and non-edentate</td>
<td>Fixed</td>
<td>51</td>
<td>(19-78)</td>
<td>NS</td>
<td>5 years</td>
</tr>
<tr>
<td>Degidi et al. (2009)/Italy</td>
<td>Randomized trial/Flap reflection</td>
<td>XIVE</td>
<td>3.0 mm</td>
<td>13 mm</td>
<td>Grit-blasted and acid-etched</td>
<td>60 implants 60 Patients</td>
<td>Anterior Maxilla</td>
<td>100%</td>
<td>non-edentate</td>
<td>Single fixed</td>
<td>31.5</td>
<td>(18-55)</td>
</tr>
<tr>
<td>Franco et al. (2009)/Italy</td>
<td>Retrospective/Flap reflection</td>
<td>Various Types¹</td>
<td>3-3.5 mm</td>
<td>10 mm</td>
<td>Various</td>
<td>94 implants 75 Maxilla 16 Mandible</td>
<td>100%</td>
<td>non-edentate</td>
<td>69 Fixed 15 None</td>
<td>53</td>
<td>(5)</td>
<td>210 mm 313 mm</td>
</tr>
<tr>
<td>Terpelle and Khoury (2008)/Germany</td>
<td>Retrospective/NS</td>
<td>XIVE</td>
<td>3.0 mm</td>
<td>3.4 mm</td>
<td>NS</td>
<td>Grit blasted/acid etched/neutralized surface (FRIADENT plus)</td>
<td>337 implants 137 patients</td>
<td>NS</td>
<td>NS</td>
<td>Fixed</td>
<td>NS</td>
<td>2</td>
</tr>
<tr>
<td>Anitua et al. (2008)/Spain</td>
<td>Retrospective/Flap reflection</td>
<td>BTI®</td>
<td>2.5 mm</td>
<td>8.5 mm</td>
<td>PRGF treated</td>
<td>911 implants 53% Maxilla</td>
<td>36 Patients 47% Mandible</td>
<td>78% non-edentate 22% Edentate</td>
<td>Fixed</td>
<td>Overdentures</td>
<td>54</td>
<td>(9)</td>
</tr>
</tbody>
</table>

© 2012 John Wiley & Sons A/S

Sohrabi et al Small-diameter implants
<table>
<thead>
<tr>
<th>Citation/Country</th>
<th>Study design/Technique</th>
<th>Implant type</th>
<th>Implant diameter</th>
<th>Implant length</th>
<th>Surface characteristic</th>
<th>Number of implants/Patients</th>
<th>Jaw segment</th>
<th>Edentulism</th>
<th>Restoration type</th>
<th>Age (years)</th>
<th>Failure/length of failed implants</th>
<th>Follow up duration</th>
<th>Implants survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degidi et al. (2008)/Italy</td>
<td>Retrospective/Flap reflection</td>
<td>Various Types</td>
<td>3-3.5 mm</td>
<td></td>
<td>Various</td>
<td>510 implants 237 patients</td>
<td>193 Maxilla 317 Mandible</td>
<td>Fixed</td>
<td>100% non-edentate</td>
<td>50 (18-80)</td>
<td>(3) 113 mm 115 mm 1*18 mm</td>
<td>20 months</td>
<td>99.40%</td>
</tr>
<tr>
<td>Morenburg and Proschel (2008)/Germany</td>
<td>Prospective/Flap reflection</td>
<td>Microplant</td>
<td>2.5 mm</td>
<td>9 mm(22) 12 mm (82) 15 mm (30)</td>
<td>Sand-plasted and CaP coated</td>
<td>134 implants 67 patients</td>
<td>Mandible 100% Edentate</td>
<td>Overdentures 69 (53-83)</td>
<td>6NS</td>
<td>6 years</td>
<td></td>
<td>95.50%</td>
<td></td>
</tr>
<tr>
<td>Reddy et al. (2008)/USA</td>
<td>Prospective, Case series/Flapless and flap reflection</td>
<td>Biohorizons</td>
<td>3.0 mm</td>
<td>NS</td>
<td>Resorbable blast surface with square threads</td>
<td>31 implants 12 patients</td>
<td>Maxilla Mandible 100% non-edentate</td>
<td>Single fixed 19-74</td>
<td>1</td>
<td>1 year</td>
<td></td>
<td>96.70%</td>
<td></td>
</tr>
<tr>
<td>Veltri et al. (2008)/Italy</td>
<td>Prospective/Flap reflection</td>
<td>Astra Tech</td>
<td>3.5 mm</td>
<td>9 mm 13 mm 15 mm 17 mm</td>
<td>TiO2-blasted</td>
<td>73 implants 12 patients</td>
<td>Maxilla Mandible 100% Edentate</td>
<td>Fixed 58 (42-74)</td>
<td>0</td>
<td>1 year</td>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Cho et al. (2007)/USA</td>
<td>Prospective/Flapless</td>
<td>Dentatus</td>
<td>2.4 mm</td>
<td>7 mm 10 mm 14 mm</td>
<td>Conventional machined</td>
<td>34 implants 10 patients</td>
<td>Mandible 100% Edentate</td>
<td>Overdentures 58.25 (30-83)</td>
<td>2NS</td>
<td>14-36 months</td>
<td></td>
<td>94%</td>
<td></td>
</tr>
<tr>
<td>Shatkin et al. (2007)/USA</td>
<td>Prospective/Flapless</td>
<td>3M</td>
<td>1.8-2.4 mm</td>
<td>NS</td>
<td>Etched self-tapping thread</td>
<td>2514 implants 531 patients</td>
<td>50% Maxilla 50% Mandible 45% Edentate 55% non-edentate</td>
<td>45% Overdentures 55% Fixed</td>
<td>20-100</td>
<td>145NS</td>
<td>2.9 years</td>
<td>94.20%</td>
<td></td>
</tr>
<tr>
<td>Cordaro et al. (2006)/Italy</td>
<td>Retrospective/NS</td>
<td>Straumann</td>
<td>3.5 mm</td>
<td>NS</td>
<td>Large-grit sandblasted and acid-etched</td>
<td>44 implants 31 Patients</td>
<td>Ant. Mandible 100% non-edentate</td>
<td>Single fixed 42.7 (13-84)</td>
<td>0</td>
<td>23 months</td>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Romeo et al. (2006)/Italy</td>
<td>Prospective/Flap reflection</td>
<td>ITI</td>
<td>3.3 mm</td>
<td>10 mm 12 mm</td>
<td>Titanium plasma-sprayed (TPS)</td>
<td>122 implants 68 patients</td>
<td>Maxilla (56) Mandible (66)</td>
<td>100% non-edentate</td>
<td>23 Single fixed 99 Partial fixed</td>
<td>55.8 (21-74)</td>
<td>(3) 3*10 mm</td>
<td>7 years</td>
<td></td>
</tr>
</tbody>
</table>

Note: *NS indicates not specified.
<table>
<thead>
<tr>
<th>Citation/ Country</th>
<th>Study design/ Technique</th>
<th>Implant type</th>
<th>Implant diameter</th>
<th>Implant length</th>
<th>Surface characteristic</th>
<th>Number of implants/ Patients</th>
<th>Jaw segment</th>
<th>Edentulism</th>
<th>Restoration type</th>
<th>Age (years)</th>
<th>Failure/ length of failed implants</th>
<th>Follow up duration</th>
<th>Implants survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zarone et al. (2006)/Italy</td>
<td>Prospective/ Flap reflection</td>
<td>ITI</td>
<td>3.3 mm</td>
<td>9 mm(9) 12 mm (17) 14 mm(8)</td>
<td>Acid-etched and sand-plasted</td>
<td>34 implants 30 patient</td>
<td>Ant. Maxilla</td>
<td>100% non-edentate</td>
<td>Fixed</td>
<td>55.3 (21-80)</td>
<td>0</td>
<td>24–39 months</td>
<td>100%</td>
</tr>
<tr>
<td>Bulard and Vance (2005)/USA</td>
<td>Prospective/ Flapless</td>
<td>IMTEC</td>
<td>1.8–2.4 mm</td>
<td>NS</td>
<td>Etched self-tapping thread</td>
<td>1029 implants</td>
<td>Mandible</td>
<td>NS</td>
<td>Overdentures</td>
<td>70</td>
<td>103</td>
<td>4 months to 8 years</td>
<td>91.17%</td>
</tr>
<tr>
<td>Comfort et al. (2005)/Italy</td>
<td>Prospective/ Flap reflection</td>
<td>Branemark</td>
<td>3.3 mm</td>
<td>10 mm (10) 13 mm(5) 15 mm(8)</td>
<td>Machined screw-shaped</td>
<td>23 implants 9 patients</td>
<td>Ant. Maxilla 6 Post. Mandible</td>
<td>70% non-edentate 30% Edentate</td>
<td>3 Fixed dentures 6 Fixed bridges</td>
<td>18–70</td>
<td>1NS</td>
<td>5 years</td>
<td>96%</td>
</tr>
<tr>
<td>Griffiths et al. (2005)/USA</td>
<td>Prospective/ Flapless</td>
<td>IMTEC</td>
<td>1.8 mm</td>
<td>10–18 mm</td>
<td>Etched self-tapping thread</td>
<td>116 implants 30 patients</td>
<td>Ant. Mandible</td>
<td>100% Edentate</td>
<td>Overdentures</td>
<td>67</td>
<td>3NS</td>
<td>5 months</td>
<td>97.40%</td>
</tr>
<tr>
<td>Ahn et al. (2004)/Korea</td>
<td>Prospective/ Flap reflection</td>
<td>IMTEC</td>
<td>1.8–2 mm</td>
<td>13 mm(6) 15 mm (19) 18 mm(2)</td>
<td>Etched self-tapping thread</td>
<td>27 implants 11 patients</td>
<td>Mandible</td>
<td>100% Edentate</td>
<td>Overdentures</td>
<td>52.9</td>
<td>1NS</td>
<td>5.5 months</td>
<td>96.30%</td>
</tr>
<tr>
<td>Mazor et al. (2004)/Israel</td>
<td>Prospective/ Flap reflection</td>
<td>Hi-Tec</td>
<td>2.4 mm</td>
<td>13 mm</td>
<td>Integrated</td>
<td>32 implants 32 patients</td>
<td>Maxilla</td>
<td>Mandible</td>
<td>Single fixed</td>
<td>NS</td>
<td>1NS</td>
<td>5 years</td>
<td>96.8</td>
</tr>
<tr>
<td>Vigolo et al. (2004)/Italy</td>
<td>Retrospective/ Flap reflection</td>
<td>3i</td>
<td>2.9 mm 3.25 mm</td>
<td>8.5 mm (10) 10 mm (51) 11.5 mm (37) 13 mm (64) 15 mm (30)</td>
<td>Dual aci-etched</td>
<td>192 implants 165 patients</td>
<td>60% Maxilla Antr(68) Post(42) 40% Mandible Antr(50) Post(32)</td>
<td>100% non-edentate</td>
<td>94 Single fixed 98 Partial</td>
<td>39 (17-74)</td>
<td>(9) 810 mm 113 mm</td>
<td>7 years</td>
<td>95.30%</td>
</tr>
<tr>
<td>Zinsli et al. (2004)/Switzerland</td>
<td>Prospective/ Flap reflection</td>
<td>ITI</td>
<td>3.3 mm</td>
<td>8 mm(60) 10 mm (126) 12 mm (112)</td>
<td>Tricalcium phosphate blasted</td>
<td>298 implants 154 patients</td>
<td>(81)% Edentate</td>
<td>(9)% non-edentate</td>
<td>120 Overdentures 57 Fixed</td>
<td>62 (19-87)</td>
<td>(9) 18 mm 310 mm 5*12 mm</td>
<td>6 years</td>
<td>96.60%</td>
</tr>
<tr>
<td>Andersen et al. (2001)/Norway</td>
<td>Prospective/ Flap reflection</td>
<td>3i</td>
<td>3.25 mm</td>
<td>13 mm 15mm</td>
<td>Dual aci-etched</td>
<td>32 implants 28 Patients</td>
<td>Ant. Maxilla</td>
<td>100% non-edentate</td>
<td>Single fixed</td>
<td>23.2 (17–54)</td>
<td>2NS</td>
<td>2 years</td>
<td>93.80%</td>
</tr>
</tbody>
</table>
Table 1. (continued)

<table>
<thead>
<tr>
<th>Citation/Country</th>
<th>Study design/Technique</th>
<th>Implant type</th>
<th>Implant diameter</th>
<th>Implant length</th>
<th>Surface characteristic</th>
<th>Number of implants/ Patients</th>
<th>Jaw segment</th>
<th>Edentulism</th>
<th>Restoration type</th>
<th>Age (years)</th>
<th>Failure/length of failed implants</th>
<th>Follow up duration</th>
<th>Implants survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallman et al. (2001)/Sweden</td>
<td>Prospective/Flap reflection</td>
<td>ITI</td>
<td>3.3 mm</td>
<td>8 mm (17) 10 mm (83) 12 mm (58)</td>
<td>Tricalcium phosphate sprayed (TPS)</td>
<td>160 implants 40 patients</td>
<td>Maxilla</td>
<td>(77.5%) Edentate (22.5%) non-edentate</td>
<td>Various fixed</td>
<td>57 (20 to 86)</td>
<td>(1) 1*8 mm</td>
<td>1 year</td>
<td>99.4</td>
</tr>
<tr>
<td>Vigolo and Givani (2000)/Italy</td>
<td>Retrospective/Flap reflection</td>
<td>3i</td>
<td>2.9 mm</td>
<td>8.5 mm (1) 10 mm (20) 13 mm (22) 15 mm (9)</td>
<td>Dual acid-etched</td>
<td>52 implants 44 patients</td>
<td>29 Maxilla 23 Mandible</td>
<td>100% non-edentate</td>
<td>Single fixed</td>
<td>35 (18–74)</td>
<td>(3) 13 mm</td>
<td>5 years</td>
<td>94.20%</td>
</tr>
<tr>
<td>Polizzi et al. (1999)/Italy</td>
<td>Prospective/Flap reflection</td>
<td>Bränemark</td>
<td>3.0 mm</td>
<td>10 mm (3) 13 mm (18) 15 mm (9)</td>
<td>Uniquely enhanced titanium oxide layer</td>
<td>30 implants 21 patients</td>
<td>Ant Maxilla</td>
<td>100% non-edentate</td>
<td>Single fixed</td>
<td>30 (13–58)</td>
<td>1/NS</td>
<td>1 year</td>
<td>96.70%</td>
</tr>
<tr>
<td>Lazzara et al. (1996)/USA</td>
<td>Retrospective/Flap reflection</td>
<td>3i</td>
<td>3.3 mm</td>
<td>NS</td>
<td>Dual acid-etched (endosseous)</td>
<td>201 implants</td>
<td>120 Maxilla 82 Mandible</td>
<td>Edentate and non-edentate</td>
<td>Various fixed</td>
<td>18–82</td>
<td>8/NS</td>
<td>5 years</td>
<td>96%</td>
</tr>
<tr>
<td>Sethi et al. (1996)/Europe</td>
<td>Prospective/Flap reflection</td>
<td>Osteo Ti</td>
<td>2.75–3 mm</td>
<td>NS</td>
<td>Grit blasted and acid etched micro-textured</td>
<td>109 implants</td>
<td>48% Ant. Maxilla 13% Ant/Mandible 39% Post. Mandible</td>
<td>NS</td>
<td>23 Single fixed 99 Partial fixed</td>
<td>NS</td>
<td>0</td>
<td>3 years</td>
<td>100%</td>
</tr>
<tr>
<td>Saadoun and Le Gall (1996)/Europe</td>
<td>Prospective/Flap reflection</td>
<td>Nobel Biocare</td>
<td>3.25 mm</td>
<td>8 mm (37) 10 mm (41) 12 mm (93) 14 mm (51) 16 mm (74)</td>
<td>Threaded titanium</td>
<td>306 implants</td>
<td>NS</td>
<td>Various</td>
<td>NS</td>
<td>(34) 8 mm (21) 10 mm (3) 12 mm (6) 14 mm (2) 16 mm (2)</td>
<td>8 years</td>
<td>93%</td>
<td></td>
</tr>
<tr>
<td>Jorneus et al. (1996)/Multicenter</td>
<td></td>
<td>Branemark</td>
<td>3 mm</td>
<td>NS</td>
<td>Enhanced titanium oxide layer</td>
<td>201 implants 106 patients</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>7/NS</td>
<td>NS</td>
</tr>
<tr>
<td>Spiekermann et al. (1995)/Germany</td>
<td>Prospective/NS</td>
<td>IMZ</td>
<td>3.3 mm</td>
<td>NS</td>
<td>HA-coated implant</td>
<td>127 implants 61 patients</td>
<td>Ant., Mandible</td>
<td>Overdentures</td>
<td>60 (24–87)</td>
<td>7/NS</td>
<td>5.7 years</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Block and Kent (1993)/USA</td>
<td>Retrospective/NS</td>
<td>Integral</td>
<td>3.25 mm</td>
<td>NS</td>
<td>HA-coated</td>
<td>238 implants</td>
<td>43% posterior</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>2/NS</td>
<td>8 years</td>
<td>99%</td>
</tr>
</tbody>
</table>
study. It was not possible to determine whether there were differences in implant survival rates based on surface characteristics (machined and rough); perhaps this was due to the fact that high survival rates were reported for all studies. We were unable to calculate survival rate using the patient, as opposed to individual implant, because these data were not always reported.

Fifteen studies with a total of 3043 inserted implants reported a minimal observation period of 5 years or more (Table 1). These studies included fixed restorations (single crowns and partial bridges), as well as mandibular overdentures. The survival rate reported for this period of observation ranged from 89% (Saadoun and Le Gall 1996) to 99% (Block and Kent 1993). The longest period of reported observation was 9.1 years (Arisan et al. 2010) with a survival rate of 92.3% for 316 implants placed in 139 patients. At the time of the present review, the most recent study with a minimum follow up of 5 years (Geckili et al. 2011) reported a survival rate of 98.7% for 159 narrow diameter implants inserted in 71 patients.

Mandibular overdentures

Seven studies involved the mandible of edentate patients. These studies (Ahn et al. 2004; Griffiths et al. 2005; Cho et al. 2007; Morneburg and Proschel, 2008; Jofre et al. 2010; Al-Nawas et al. 2011; Elsyad et al. 2011) included a total of 489 implants inserted in 207 patients. Patients’ ages ranged between 30 and 90 years. Implants’ diameters placed were 1.8–3.3 mm, and 7–18 mm in length. The surgical technique implemented was flapless in two out of the seven studies. The implant overdenture with ball-clip attachment system. The Follow up period was 6 months to 6 years, with survival rate reported to be 94% to 98%.

Discussion

Small-Diameter Implants, Narrow-Diameter Implants or Mini-Dental Implants are all used to describe implants with diameters less than 4 mm. They were first introduced commercially in the dental field in 1990 (Davarpahneh et al. 2000). Since that time, several studies have been carried out using these implants, all of which are presently commercially available (both submerged and non-submerged) (Zinsli et al. 2004). The various designs of SDIs have become more commonly used in recent decades due limitations in the geometry and capacity of the alveolar bone (Olate et al. 2010). The main two advantages of SDIs are: [i] the ability to apply less invasive surgical procedures when there is circumferential bone deficiency around the implants, and [ii] the ability to place SDIs in reduced interradicular spaces, such as the edentulous ridge of the mandibular incisors (Olate et al. 2010; Elsyad et al. 2011).

As shown in the current review, the survival rate of small-diameter implants appears to be similar to that of regular diameter implants. In the current study, the majority of studies reported survival rates at 95–100%, and no study reported survival rates below 89%. Although most insertion techniques used to place implants require flap reflection to give practitioner better and clearer visibility, this is considered as an invasive approach (Fortin et al. 2006). Flap elevation to expose the surgical site may lead to trauma to the soft tissues, pain and subsequent bone resorption (al-Ansari and Morris, 1998; Oh et al. 2007). Flapless techniques have been recommended as the surgical protocol for both regular and SD implants. This flapless approach is considered to offer advantages over the traditional flap access approach. Bleeding may be minimized, as well as surgical time (Becker et al. 2005; Casap et al. 2005; Komiyama et al. 2008). Furthermore, no negative influence on implant survival has been reported with this technique (Berdougo et al. 2010; Mueller et al. 2011). Some studies even suggest that, with flapless implant surgery, patients’ postoperative discomfort, such as swelling and pain, is almost negligible (Casap et al. 2005). Flapless insertion of dental implants prevents complications arising from soft-tissue elevation, such as infection, dehiscence and necrosis. Furthermore, flapless implant placement appears to provide dental implant success rates equal to conventional techniques (Berdougo et al. 2010). A recent historical study indicated that a flapless technique to insert implants has fewer inflammatory consequences and, thus, earlier re-epithelialization than using flap reflection techniques (Naert et al. 2002). Theoretically, a high success rate can be obtained by using this technique through careful patient selection and treatment planning. In this review, we found that there is no difference in the implants’ survival rate between studies using the flapless and flap reflection techniques. However, only six studies in this review were performed using the flapless approach. Thus, more studies should be carried out using flapless techniques.

To our knowledge, this is one of the first studies that show the relationship between implant length and survival rate in SDIs. In fact, few studies have been carried out in this field. One result of this study was the finding that failure is accompanied with short implants more often than with longer ones (Weng et al. 2003; Feldman et al. 2004; Herrmann et al. 2005). While other studies have reported that implant length has no significant impact on survival rate (Sethi et al. 1996; Testori et al. 2001; Lemmerman and Lemmerman, 2005; Sun et al. 2011), these were carried out with regular diameter implants. Several factors may explain this controversy, such as the implant’s primary stability, the quality of patient’s bone and the practitioner’s learning curve. In this SDI study, only 13 out of 40 studies reported the length of the failed implants. In those that did report implant length, the failure rate was higher in the shorter SDIs.

One of the major goals in oral public health promotion is to develop and test technologies that address oral health problems. We believe that lower income, elder denture wearers suffer important problems that could be addressed through better stabilization of their dentures. Thus, it is our role to promote the development and testing of low cost, minimally invasive implant therapies.

Summary and Conclusion

In this review, we aimed to understand the scientific evidence which exists regarding SDIs and their flapless placement. We found only a few studies in which flapless placement was carried out, but these studies suggest that SDIs placed using a flapless approach is successful. We also learned that there may be reduced success when these SDIs are of shorter length. More studies need to be carried out to provide additional rigorous scientific evidence to support this therapeutic paradigm. With cost of health care increasing on the rise, along with greater needs from populations with limited incomes, low-cost solutions for denture stability should be a high priority for government, academic institutions, funding agencies, researchers and industry.
References

Feine, J.S., Carlsson, G.E., Awad, M.A., Chehade, A., Duncan, W.J., Gizani, S., Head, T., Lund, J.P., Mac-

Romeo, E., Lops, D., Armourlini, L., Chiapasco, M., Ghisolfi, M. & Vogel, G. [2006] Clinical and radiographic evaluation of small-diameter (3.3-mm) implants followed for 1–7 years: a longitudi-

Velti, M., Ferrari, M. & Balleri, P. [2008] One-year outcome of narrow diameter blasted implants for rehabilitation of maxillas with knife-edge resorp-

© 2012 John Wiley & Sons A/S